Document de travail

Optimal epidemic suppression under an ICU constraint

Laurent Miclo, Jörgen W. Weibull et Daniel Spiro

Résumé

How much and when should we limit economic and social activity to ensure that the health-care system is not overwhelmed during an epidemic? We study a setting where ICU resources are constrained and suppression is costly. Providing a fully analytical solution we show that the common wisdom of “flattening the curve”, where suppression measures are continuously taken to hold down the spread throughout the epidemic, is suboptimal. Instead, the optimal suppression is discontinuous. The epidemic should be left unregulated in a first phase and when the ICU constraint is approaching society should quickly lock down (a discontinuity). After the lockdown regulation should gradually be lifted, holding the rate of infected constant, thus respecting the ICU resources while not unnecessarily limiting economic activity. In a final phase, regulation is lifted. We call this strategy “filling the box”.

Mots-clés

Epidemic; Optimal control; Health; Suppression; Infection; Corona.;

Remplacé par

Laurent Miclo, Daniel Spiro et Jörgen W. Weibull, « Optimal epidemic suppression under an ICU constraint », Journal of Mathematical Economics, vol. 101, n° 102669, août 2022.

Référence

Laurent Miclo, Jörgen W. Weibull et Daniel Spiro, « Optimal epidemic suppression under an ICU constraint », TSE Working Paper, n° 20-1111, juin 2020.

Voir aussi

Publié dans

TSE Working Paper, n° 20-1111, juin 2020