Document de travail

Nonparametric Instrumental Regression with Right Censored Duration Outcomes

Jad Beyhum, Jean-Pierre Florens et Ingrid Van Keilegom

Résumé

This paper analyzes the effect of a discrete treatment Z on a duration T. The treatment is not randomly assigned. The confoundingness issue is treated using a discrete instrumental variable explaining the treatment and independent of the error term of the model. Our framework is nonparametric and allows for random right censoring. This specification generates a nonlinear inverse problem and the average treatment effect is derived from its solution. We provide local and global identification properties that rely on a nonlinear system of equations. We propose an estimation procedure to solve this system and derive rates of convergence and conditions under which the estimator is asymptotically normal. When censoring makes identification fail, we develop partial identification results. Our estimators exhibit good finite sample properties in simulations. We also apply our methodology to the Illinois Reemployment Bonus Experiment.

Mots-clés

Duration Models; Endogeneity; Instrumental variable; Nonseparability; Partial identification;

Référence

Jad Beyhum, Jean-Pierre Florens et Ingrid Van Keilegom, « Nonparametric Instrumental Regression with Right Censored Duration Outcomes », TSE Working Paper, n° 20-1164, novembre 2020.

Voir aussi

Publié dans

TSE Working Paper, n° 20-1164, novembre 2020