Document de travail

Prediction via the Quantile-Copula Conditional Density Estimator

Olivier Faugeras

Résumé

To make a prediction of a response variable from an explanatory one which takes into account features such as multimodality, a nonparametric approach based on an estimate of the conditional density is advocated and considered. In particular, we build point and interval predictors based on the quantile-copula estimator of the conditional density by Faugeras [8]. The consistency of these predictors is proved through a uniform consistency result of the conditional density estimator. Eventually, the practical implementation of these predictors is discussed. A simulation on a real data set illustrates the proposed methods.

Mots-clés

nonparametric estimation; modal regressor; level-set;

Remplacé par

Olivier Faugeras, « Prediction via the Quantile-Copula Conditional Density Estimator », Communications in Statistics - Theory and Methods, vol. 41, n° 1, 2012, p. 16–33.

Référence

Olivier Faugeras, « Prediction via the Quantile-Copula Conditional Density Estimator », TSE Working Paper, n° 09-124, 7 décembre 2009.

Voir aussi

Publié dans

TSE Working Paper, n° 09-124, 7 décembre 2009