Document de travail

Endogeneity and Instrumental Variables in Dynamic Models

Jean-Pierre Florens et Guillaume Simon

Résumé

The objective of the paper is to draw the theory of endogeneity in dynamic models in discrete and continuous time, in particular for diffusions and counting processes. We first provide an extension of the separable set-up to a separable dynamic framework given in term of semi-martingale decomposition. Then we define our function of interest as a stopping time for an additional noise process, whose role is played by a Brownian motion for diffusions, and a Poisson process for counting processes.

Codes JEL

  • C14: Semiparametric and Nonparametric Methods: General
  • C32: Time-Series Models • Dynamic Quantile Regressions • Dynamic Treatment Effect Models • Diffusion Processes
  • C51: Model Construction and Estimation

Référence

Jean-Pierre Florens et Guillaume Simon, « Endogeneity and Instrumental Variables in Dynamic Models », TSE Working Paper, n° 10-178, avril 2010.

Voir aussi

Publié dans

TSE Working Paper, n° 10-178, avril 2010