Résumé
The main contribution of this paper is to propose a bootstrap method for inference on integrated volatility based on the pre-averaging approach, where the pre-averaging is done over all possible overlapping blocks of consecutive observations. The overlapping nature of the pre-averaged returns implies that the leading martingale part in the pre-averaged returns are kn-dependent with kn growing slowly with the sample size n. This motivates the application of a blockwise bootstrap method. We show that the \blocks of blocks" bootstrap method is not valid when volatility is time-varying. The failure of the blocks of blocks bootstrap is due to the heterogeneity of the squared pre-averaged returns when volatility is stochastic. To preserve both the dependence and the heterogeneity of squared pre-averaged returns, we propose a novel procedure that combines the wild bootstrap with the blocks of blocks bootstrap. We provide a proof of the first order asymptotic validity of this method for percentile and percentile-t intervals. Our Monte Carlo simulations show that the wild blocks of blocks bootstrap improves the finite sample properties of the existing first order asymptotic theory. We use empirical work to illustrate its use in practice.
Mots-clés
Block bootstrap; high frequency data; market microstructure noise; preaveraging; realized volatility; wild bootstrap;
Remplace
Silvia Goncalves, Ulrich Hounyo et Nour Meddahi, « Bootstrapping Pre-Averaged Realized Volatility under Market Microstructure Noise », TSE Working Paper, n° 17-809, mai 2017.
Référence
Silvia Goncalves, Ulrich Hounyo et Nour Meddahi, « Bootstrapping Pre-Averaged Realized Volatility under Market Microstructure Noise », Econometric Theory, vol. 33, n° 4, août 2017, p. 791–838.
Voir aussi
Publié dans
Econometric Theory, vol. 33, n° 4, août 2017, p. 791–838