Résumé
This paper discusses the solution of nonlinear integral equations with noisy integral kernels as they appear in nonparametric instrumental regression. We propose a regularized Newton-type iteration and establish convergence and convergence rate results. A particular emphasis is on instrumental regression models where the usual conditional mean assumption is replaced by a stronger independence assumption. We demonstrate for the case of a binary instrument that our approach allows the correct estimation of regression functions which are not identifiable with the standard model. This is illustrated in computed examples with simulated data.
Mots-clés
Ill-posed integral equation; Landweber iteration; IV quantile; Kernel smoothing;
Codes JEL
- C13: Estimation: General
- C14: Semiparametric and Nonparametric Methods: General
- C30: General
- C31: Cross-Sectional Models • Spatial Models • Treatment Effect Models • Quantile Regressions • Social Interaction Models
Référence
Fabian Dunker, Jean-Pierre Florens, Thorsten Hohage, Jan Johannes et Enno Mammen, « Iterative estimation of solutions to noisy nonlinear operator equations in nonparametric instrumental regression », Journal of Econometrics, vol. 178, n° 3, janvier 2014, p. 444–455.
Voir aussi
Publié dans
Journal of Econometrics, vol. 178, n° 3, janvier 2014, p. 444–455