Résumé
The notion of Nash equilibria plays a key role in the analysis of strategic interactions in the framework of N player games. Analysis of Nash equilibria is however a complex issue when the number of players is large. In this article, we emphasize the role of optimal transport theory in (i) the passage from Nash to Cournot–Nash equilibria as the number of players tends to infinity and (ii) the analysis of Cournot–Nash equilibria.
Mots-clés
Nash equilibria; games with a continuum of players; Cournot–Nash equilibria; Monge–Kantorovich optimal transportation problem;
Remplace
Adrien Blanchet et Guillaume Carlier, « From Nash to Cournot-Nash equilibria via the Monge-Kantorovich problem », TSE Working Paper, n° 14-490, mai 2014.
Référence
Adrien Blanchet et Guillaume Carlier, « From Nash to Cournot–Nash equilibria via the Monge–Kantorovich problem », Philosophical Transactions of the Royal Society A, vol. 372, n° 2028, 6 octobre 2014.
Publié dans
Philosophical Transactions of the Royal Society A, vol. 372, n° 2028, 6 octobre 2014