Article

Economic Implications of Nonlinear Pricing Kernels

Caio Almeida, and René Garcia

Abstract

Based on a family of discrepancy functions, we derive nonparametric stochastic discount factor bounds that naturally generalize variance, entropy, and higher-moment bounds. These bounds are especially useful to identify how parameters affect pricing kernel dispersion in asset pricing models. In particular, they allow us to distinguish between models where dispersion comes mainly from skewness from models where kurtosis is the primary source of dispersion. We analyze the admissibility of disaster, disappointment aversion, and long-run risk models with respect to these bounds.

Reference

Caio Almeida, and René Garcia, Economic Implications of Nonlinear Pricing Kernels, Management Science, vol. 63, n. 10, 2017, pp. 3361–3380.

See also

Published in

Management Science, vol. 63, n. 10, 2017, pp. 3361–3380