Article

A Game-theoretical Model of the Landscape Theory

Michel Le Breton, Alexander Shapoval et Shlomo Weber

Résumé

In this paper we examine a game-theoretical generalization of the landscape theory introduced by Axelrod and Bennett (1993). In their two-bloc setting each player ranks the blocs on the basis of the sum of her individual evaluations of members of the group. We extend the Axelrod–Bennett setting by allowing an arbitrary number of blocs and expanding the set of possible deviations to include multi-country gradual deviations. We show that a Pareto optimal landscape equilibrium which is immune to profitable gradual deviations always exists. We also indicate that while a landscape equilibrium is a stronger concept than Nash equilibrium in pure strategies, it is weaker than strong Nash equilibrium.

Mots-clés

Landscape theory; Landscape equilibrium; Blocs; Gradual deviation; Potential functions; Hedonic games;

Remplacé par

Michel Le Breton, Alexander Shapoval et Shlomo Weber, « A Game-Theoretical Model of the Landscape Theory », TSE Working Paper, n° 20-1113, juin 2020.

Référence

Michel Le Breton, Alexander Shapoval et Shlomo Weber, « A Game-theoretical Model of the Landscape Theory », Journal of Mathematical Economics, vol. 92, janvier 2021, p. 41–46.

Voir aussi

Publié dans

Journal of Mathematical Economics, vol. 92, janvier 2021, p. 41–46