Article

A generalized interpolation inequality and its application to the stabilization of damped equations

Pascal Bégout et Fernando Soria

Résumé

In this paper, we establish a generalized Hölder's or interpolation inequality for weighted spaces in which the weights are non-necessarily homogeneous. We apply it to the stabilization of some damped wave-like evolution equations. This allows obtaining explicit decay rates for smooth solutions for more general classes of damping operators. In particular, for 1−d models, we can give an explicit decay estimate for pointwise damping mechanisms supported on any strategic point.

Mots-clés

Damped equations; Damping control; Generalized Hölder's inequality; Interpolation inequality; Stabilization;

Référence

Pascal Bégout et Fernando Soria, « A generalized interpolation inequality and its application to the stabilization of damped equations », Communication in Partial Differential Equations, vol. 240, n° 2, septembre 2007, p. 324–356.

Voir aussi

Publié dans

Communication in Partial Differential Equations, vol. 240, n° 2, septembre 2007, p. 324–356