Document de travail

A Game-Theoretical Model of the Landscape Theory

Michel Le Breton, Alexander Shapoval et Shlomo Weber

Résumé

In this paper we examine a game-theoretical generalization of the landscape theory introduced by Axelrod and Bennett (1993). In their two-bloc setting each player ranks the blocs on the basis of the sum of her individual evaluations of members of the group. We extend the Axelrod-Bennett setting by allowing an arbitrary number of blocs and expanding the set of possible deviations to include multi-country gradual deviations. We show that a Pareto optimal landscape equilibrium which is immune to profitable gradual deviations always exists. We also indicate that while a landscape equilibrium is a stronger concept than Nash equilibrium in pure strategies, it is weaker than strong Nash equilibrium.

Mots-clés

Landscape theory; landscape equilibrium; blocs; gradual deviation; potential functions; hedonic games.;

Remplace

Michel Le Breton, Alexander Shapoval et Shlomo Weber, « A Game-theoretical Model of the Landscape Theory », Journal of Mathematical Economics, vol. 92, janvier 2021, p. 41–46.

Référence

Michel Le Breton, Alexander Shapoval et Shlomo Weber, « A Game-Theoretical Model of the Landscape Theory », TSE Working Paper, n° 20-1113, juin 2020.

Voir aussi

Publié dans

TSE Working Paper, n° 20-1113, juin 2020