Résumé
We show how the solutions to a 2 X 2 linear system involving Schrödinger operators blow up as the parameter y tends to some critical value which is the principal eigenvalue of the system; here the potential is continuous positive with superquadratic growth and the square matrix of the system is with constant coefficients and may have a double eigenvalue.
Mots-clés
Maximum Principle; Antimaximum Principle; Elliptic Equation and Systems; Cooperative and Non-cooperative Systems; Principle Eigenvalue;
Remplacé par
Bénédicte Alziary Chassat et Jacqueline Fleckinger, « Blow up of the solutions to a linear elliptic system involving schrödinger operators », dans Fourteenth International Conference Zaragoza-Pau on Mathematics and its Applications, vol. 41, 2018, p. 21–30, Mat. García Galdeano.
Référence
Bénédicte Alziary Chassat et Jacqueline Fleckinger, « Blow up of the solutions to a linear elliptic system involving schrödinger operators », TSE Working Paper, n° 17-797, avril 2017.
Voir aussi
Publié dans
TSE Working Paper, n° 17-797, avril 2017