Résumé
The maximum-likelihood estimator of nonlinear panel data models with fixed effects is asymptotically biased under rectangular-array asymptotics. The literature has devoted substantial effort to devising methods that correct for this bias as a means to salvage standard inferential procedures. The chief purpose of this paper is to show that the (recursive, parametric) bootstrap replicates the asymptotic distribution of the (uncorrected) maximum-likelihood estimator and of the likelihood-ratio statistic. This justifies the use of confidence sets and decision rules for hypothesis testing constructed via conventional bootstrap methods. No modification for the presence of bias needs to be made.
Mots-clés
Bootstrap,; fixed effects; incidental parameter problem; inference, panel data;
Codes JEL
- C23: Panel Data Models • Spatio-temporal Models
Remplacé par
Ayden Higgins et Koen Jochmans, « Bootstrap inference for fixed-effect models », Econometrica, vol. 92, n° 2, mars 2024, p. 411–427.
Référence
Koen Jochmans et Ayden Higgins, « Bootstrap inference for fixed-effect models », TSE Working Paper, n° 22-1328, avril 2022, révision décembre 2023.
Voir aussi
Publié dans
TSE Working Paper, n° 22-1328, avril 2022, révision décembre 2023