Document de travail

CV@R penalized portfolio optimization with biased stochastic mirror descent

Manon Costa, Sébastien Gadat et Lorick Huang

Résumé

This article studies and solves the problem of optimal portfolio allocation with CV@R penalty when dealing with imperfectly simulated financial assets. We use a Stochastic biased Mirror Descent to find optimal resource allocation for a portfolio whose underlying assets cannot be generated exactly and may only be approximated with a numerical scheme that satisfies suitable error bounds, under a risk management constraint. We establish almost sure asymptotic properties as well as the rate of convergence for the averaged algorithm. We then focus on the optimal tuning of the overall procedure to obtain an optimized numerical cost. Our results are then illustrated numerically on simulated as well as real data sets.

Mots-clés

Stochastic Mirror Descent; Biased observations,; Risk management constraint; Portfolio selection; Discretization;

Remplacé par

Manon Costa, Sébastien Gadat et Lorick Huang, « CV@R penalized portfolio optimization with biased stochastic mirror descent », Finance and Stochastics, 2024, à paraître.

Référence

Manon Costa, Sébastien Gadat et Lorick Huang, « CV@R penalized portfolio optimization with biased stochastic mirror descent », TSE Working Paper, n° 22-1342, juin 2022, révision novembre 2023.

Voir aussi

Publié dans

TSE Working Paper, n° 22-1342, juin 2022, révision novembre 2023