Résumé
In this paper we investigate the problem of nonparametric monotone frontier estimation from an extreme-values theory perspective. This allows to revisit the asymptotic theory of the popular Free Disposal Hull estimator in a general setup, to derive new and asymptotically Gaussian estimators and to provide useful asymptotic confidence bands for the monotone boundary function. The finite sample behavior of the suggested estimators is explored through Monte-Carlo experiments. We also apply our approach to a real data set on the production activity of the French postal services.
Remplacé par
Abdelaati Daouia, Jean-Pierre Florens et Léopold Simar, « Frontier estimation and extreme value theory », Bernoulli, vol. 16, n° 4, 2010, p. 1039–1063.
Référence
Abdelaati Daouia, Jean-Pierre Florens et Léopold Simar, « Frontier Estimation and Extreme Values Theory », TSE Working Paper, n° 10-165, janvier 2009.
Voir aussi
Publié dans
TSE Working Paper, n° 10-165, janvier 2009